
Supplemental Note: Net-Trim Implementation for
Convolutional Layers

Alireza Aghasi∗ Afshin Abdi† Justin Romberg†

Abstract

This short note presents the details of implementing the the Net-Trim algorithm for convolutional
layers. Net-Trim requires a least-squares solve at each iteration and the main idea is to employ the
conjugate gradient (CG) method in operator form. This way the least squares step can be efficiently
carried out via a series of forward/adjoint operations.

1 Net-Trim in Operator Form

For W ∈ RN×M , Xin ∈ RN×P , and Ω ⊆ {1, · · · ,M} × {1, · · · , P} the Net-Trim central program in the
matrix form is

minimize
W

‖W ‖1 subject to

{ ∥∥(W>Xin −Xout
)

Ω

∥∥
F
≤ ε(

W>Xin
)

Ωc ≤ V Ωc

. (1)

When Xin ∈ Tin, W ∈ Tw and Xout ∈ Tout are tensors, and Ω is a set of indices on the tensor elements,
our central program takes the following form:

minimize
W

‖W ‖1 subject to

{ ∥∥(AXin(W)−Xout
)

Ω

∥∥
F
≤ ε

(AXin(W))Ωc ≤ V Ωc

, (2)

where ‖ · ‖1 and ‖ · ‖F naturally apply to the vectorized tensors. To clarify the notation, given a tensor
Z and an index set Ω, ZΩ is a tensor of similar size as Z, which takes identical values as Z on Ω and
takes zero values on Ωc.

The operator AXin : Tw → Tout is a linear operator that is parameterized by Xin. For instance in
convolutional layers it is a tensor convolution operator with one of the operands being Xin. Throughout
the text we assume that A∗

Xin : Tout → Tw is the adjoint operator. The adjoint operator needs to satisfy
the following property:

∀W ∈ Tw,∀Z ∈ Tout : 〈AXin(W),Z〉Tout = 〈W ,A∗Xin(Z)〉Tw .

This is the fundamental property that we verify when forming the adjoint operator.
∗(Corresponding Author) Robinson College of Business, Georgia State University, Atlanta, GA. Email: aaghasi@gsu.edu
†School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA. Emails: {abdi,jrom}@ece.gatech.edu.

1

Program (2) can be equivalently cast as

minimize
W (1)∈Tout

W (2),W (3)∈Tw

f1

(
W (1)

)
+ f2

(
W (2)

)
subject to

{
W (1) = AXin

(
W (3)

)
W (2) = W (3)

, (3)

where
f1 (W) = I‖WΩ−Xout

Ω ‖F≤ε
(W) + IWΩc≤V Ωc (W) , and f2 (W) = ‖W ‖1 ,

and IC(·) represents the indicator function of the set C:

IC(W) =

{
0 W ∈ C

+∞ W /∈ C .

For the convex program (3), the ADMM update for each variable at the k-th iteration follows the
standard forms

W
(1)
k+1 = arg min

W
f1 (W) +

ρ

2

∥∥∥W + U
(1)
k −AXin

(
W

(3)
k

)∥∥∥2

F
, (4)

W
(2)
k+1 = arg min

W
f2 (W) +

ρ

2

∥∥∥W + U
(2)
k −W

(3)
k

∥∥∥2

F
, (5)

W
(3)
k+1 = arg min

W

ρ

2

∥∥∥W (1)
k+1 + U

(1)
k −AXin (W)

∥∥∥2

F
+
ρ

2

∥∥∥W (2)
k+1 + U

(2)
k −W

∥∥∥2

F
, (6)

and the dual updates are performed via

U
(1)
k+1 = U

(1)
k + W

(1)
k+1 −AXin

(
W

(3)
k

)
, U

(2)
k+1 = U

(2)
k + W

(2)
k+1 −W

(3)
k+1.

Obtaining closed-form expressions for the programs (4) and (5) is identical to the Net-Trim derivation in
([AAR18]) and we bring them here for completeness. For W (1) update we have(

W
(1)
k+1

)
Ω

= arg min
WΩ: ‖WΩ−Xout

Ω ‖F≤ε

ρ

2

∥∥∥WΩ −
(
AXin

(
W

(3)
k

)
−U

(1)
k

)
Ω

∥∥∥2

F
,

and the closed form expression is obtained using the fact that

arg min
WΩ: ‖WΩ−ZΩ‖F≤ε

ρ

2
‖WΩ − Y Ω‖2F =

{
Y Ω if ‖Y Ω −ZΩ‖F ≤ ε

ZΩ + ε Y Ω−ZΩ
‖Y Ω−ZΩ‖F

else .

Also (
W

(1)
k+1

)
Ωc

= arg min
WΩc : WΩc≤V Ωc

ρ

2

∥∥∥WΩc −
(
AXin

(
W

(3)
k

)
−U

(1)
k

)
Ωc

∥∥∥2

F
,

2

to obtain which we use the fact that

arg min
WΩc : WΩc≤V Ωc

ρ

2
‖WΩc − Y Ωc‖2F = Y Ωc − (Y Ωc − V Ωc)+ .

Finally, the solution to (5) is the standard soft thresholding operator (e.g., see §4.4.3 of [BPC+11]),
which reduces the update to

W
(2)
k+1 = S1/ρ

(
W

(3)
k −U

(2)
k

)
, where Sc (w) =


w − c w > c

0 |w| ≤ c
w + c w < −c

.

Note that when S1/ρ applies to a tensor, it applies to each element individually. After combining the
steps above, we propose Algorithm 1 as a computational scheme to address the Net-Trim in operator
form.

Algorithm 1: Implementation of the Net-Trim In Operator Form

Input: Xin ∈ Tin, Xout ∈ Tout, Ω, V Ω, ε, ρ
initialize U (1) ∈ Tout,U (2) ∈ Tw and W (3) ∈ Tw % all initializations can be with 0

while not converged do
Y ← AXin

(
W (3)

)
−U (1)

if
∥∥Y Ω −Xout

Ω

∥∥
F
≤ ε then

W
(1)
Ω ← Y Ω

else
W

(1)
Ω ←Xout

Ω + ε
∥∥Y Ω −Xout

Ω

∥∥−1

F

(
Y Ω −Xout

Ω

)
end
W

(1)
Ωc ← Y Ωc − (Y Ωc − V Ωc)+

W (2) ← S1/ρ

(
W (3) −U (2)

)
% S1/ρ applies to each element of the tensor

W (3) ← arg minW
1
2

∥∥∥AXin (W)−
(
W (1) + U (1)

)∥∥∥2

F
+ 1

2

∥∥∥W −
(
W (2) + U (2)

)∥∥∥2

F

U (1) ← U (1) + W (1) −AXin

(
W (3)

)
U (2) ← U (2) + W (2) −W (3)

end
Output: W (3)

The only undiscussed part in Algorithm 1 is the update for W (3) which we address using an operator
form of the conjugate gradient algorithm explained in the next section.

2 Least Squares Update Using an Operator Conjugate Gradient

In this section we address the minimization

minimize
W∈Tw

1

2
‖AXin (W)−B‖2F +

1

2
‖W −C‖2F , (7)

3

where AXin : Tw → Tout, and B ∈ Tout and C ∈ Tw are tensors. The minimizer to (7) can be found by
taking a derivative and setting it to zero, i.e.,

A∗Xin (AXin (W)−B) + W −C = 0, (8)

or
A∗Xin (AXin (W)) + W = A∗Xin (B) + C. (9)

Solving (9) for W is efficiently possible via the method of conjugate gradient. The following algorithm
outlines the process of solving (9), which is a variant of the original CG algorithm (e.g., see [CGL])
modified to address (9).

Algorithm 2: Least Squares Update in the Net-Trim Using Conjugate Gradient

initialize W 0 = 0; R0 = A∗Xin (B) + C; P 0 = R0

for k = 1, . . . ,Kmax do
T k−1 = AXin (P k−1)

αk =
‖Rk−1‖2F

‖T k−1‖2F +‖P k−1‖2F
W k = W k−1 + αkP k−1

Rk = Rk−1 − αk
(
A∗Xin (T k−1) + P k−1

)
βk =

‖Rk‖2F
‖Rk−1‖2F

P k = Rk + βkP k−1

end
Output: WKmax

References

[AAR18] Alireza Aghasi, Afshin Abdi, and Justin Romberg. Fast convex pruning of deep neural
networks. arXiv preprint arXiv:1806.06457, 2018.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

[CGL] Conjugate Gradient Algorithm, howpublished = https://math.aalto.fi/opetus/inv/
cgalgorithm.pdf, note = Accessed: 2018-07-18.

4

https://math.aalto.fi/opetus/inv/cgalgorithm.pdf
https://math.aalto.fi/opetus/inv/cgalgorithm.pdf

	Net-Trim in Operator Form
	Least Squares Update Using an Operator Conjugate Gradient

